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Abstract
Learning problems form an important category of computational tasks that generalizes many of the

computations researchers apply to large real-life data sets. We ask: what concept classes can be learned
privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific
training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a
notion that provides strong confidentiality guarantees in contexts where aggregate information is released
about a database containing sensitive information about individuals.

Our goal is a broad understanding of the resources required for private learning in terms of samples,
computation time, and interaction. We demonstrate that, ignoring computational constraints, it is pos-
sible to privately agnostically learn any concept class using a sample size approximately logarithmic in
the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specif-
ically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity
and output size, then it can be learned privately using a polynomial number of samples. We also present
a computationally efficient private PAC learner for the class of parity functions. This result dispels the
similarity between learning with noise and private learning (both must be robust to small changes in
inputs), since parity is thought to be very hard to learn given random classification noise.

Local (or randomized response) algorithms are a practical class of private algorithms that have re-
ceived extensive investigation. We provide a precise characterization of local private learning algorithms.
We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statis-
tical query (SQ) model. Therefore, for local private learning algorithms, the similarity to learning with
noise is stronger: local learning is equivalent to SQ learning, and SQ algorithms include most known
noise-tolerant learning algorithms. Finally, we present a separation between the power of interactive
and noninteractive local learning algorithms. Because of the equivalence to SQ learning, this result also
separates adaptive and nonadaptive SQ learning.

1 Introduction

The data privacy problem in modern databases is similar to that faced by statistical agencies and medical
researchers: to learn and publish global analyses of a population while maintaining the confidentiality of the
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participants in a survey. There is a vast body of work on this problem in statistics and computer science.
However, until recently, most schemes proposed in the literature lacked rigorous analysis of privacy and
utility.

A recent line of work [29, 26, 11, 24, 22, 21, 47, 25, 44, 7, 48, 14, 27] , initiated by Dinur and Nissim [20]
and called private data analysis, seeks to place data privacy on firmer theoretical foundations and has been
successful at formulating a strong, yet attainable privacy definition. The notion of differential privacy [24]
that emerged from this line of work provides rigorous guarantees even in the presence of a malicious adver-
sary with access to arbitrary auxiliary information. It requires that whether an individual supplies her actual
or fake information has almost no effect on the outcome of the analysis.

Given this definition, it is natural to ask: what computational tasks can be performed while maintaining
privacy? Research on data privacy, to the extent that it formalizes precise goals, has mostly focused on
function evaluation (“what is the value of f(z)?”), namely, how much privacy is possible if one wishes to
release (an approximation to) a particular function f , evaluated on the database z. (A notable exception is the
recent work of McSherry and Talwar, using differential privacy in the design of auction mechanisms [44]).
Our goal is to expand the utility of private protocols by examining which other computational tasks can be
performed in a privacy-preserving manner.

Private Learning. Learning problems form an important category of computational tasks that generalizes
many of the computations researchers apply to large real-life data sets. In this work, we ask what can be
learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or
specific training example. Our goal is a broad understanding of the resources required for private learning
in terms of samples, computation time, and interaction. We examine two basic notions from computational
learning theory: Valiant’s probabilistically approximately correct (PAC) learning [51] model and Kearns’
statistical query (SQ) model [39].

Informally, a concept is a function from examples to labels, and a class of concepts is learnable if for any
distribution D on examples, one can, given limited access to examples sampled from D labeled according
to some target concept c, find a small circuit (hypothesis) which predicts c’s labels with high probability
over future examples taken from the same distribution. In the PAC model, a learning algorithm can access
a polynomial number of labeled examples. In the SQ model, instead of accessing examples directly, the
learner can specify some properties (i.e., predicates) on the examples, for which he is given an estimate, up
to an additive polynomially small error, of the probability that a random example chosen from D satisfies
the property. PAC learning is strictly stronger than the SQ learning [39].

We model a statistical database as a vector z = (z1, · · · , zn), where each entry has been contributed by
an individual. When analyzing how well a private algorithm learns a concept class, we assume that entries
zi of the database are random examples generated i.i.d. from the underlying distribution D and labeled by
a target concept c. This is exactly how (not necessarily private) learners are analyzed. For instance, an
example might consist of an individual’s gender, age, and blood pressure history, and the label, whether this
individual has had a heart attack. The algorithm has to learn to predict whether an individual has had a heart
attack, based on gender, age, and blood pressure history, generated according to D.

We require a private algorithm to keep entire examples (not only the labels) confidential. In the scenario
above, it translates to not revealing each participant’s gender, age, blood pressure history, and heart attack
incidence. More precisely, the output of a private learner should not be significantly affected if a partic-
ular example zi is replaced with arbitrary z′i, for all zi and z′i. In contrast to correctness or utility, which
is analyzed with respect to distribution D, differential privacy is a worst-case notion. Hence, when we
analyze the privacy of our learners we do not make any assumptions on the underlying distribution. Such as-
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sumptions are fragile and, in particular, would fall apart in the presence of auxiliary knowledge (also called
background knowledge or side information) that the adversary might have: conditioned on the adversary’s
auxiliary knowledge, the distribution over examples might look very different from D.

1.1 Our Contributions

We introduce and formulate private learning problems, as discussed above, and develop novel algorithmic
tools and bounds on the sample size required by private learning algorithms. Our results paint a picture of
the classes of learning problems that are solvable subject to privacy constraints. Specifically, we provide:

(1) A Private Version of Occam’s Razor. We present a generic private learning algorithm. For any concept
class C, we give a distribution-free differentially-private agnostic PAC learner for C that uses a number
of samples proportional to log |C|. This is a private analogue of the “cardinality version” of Occam’s
razor, a basic sample complexity bound from (non-private) learning theory. The sample complexity
of our version is similar to that of the original, although the private algorithm is very different. As in
Occam’s razor, the learning algorithm is not necessarily computationally efficient.

(2) An Efficient Private Learner for Parity. We give a computationally efficient, distribution-free dif-
ferentially private PAC learner for the class of parity functions1 over {0, 1}d. The sample and time
complexity are comparable to that of the best non-private learner.

(3) Equivalence of Local (“Randomized Response”) and SQ Learning. We precisely characterize the
power of local, or randomized response, private learning algorithms. Local algorithms are a special
(practical) class of private algorithms and are popular in the data mining and statistics literature [53, 2,
1, 3, 52, 29, 45, 36]. They add randomness to each individual’s data independently before processing the
input. We show that a concept class is learnable by a local differentially private algorithm if and only if
it is learnable in the statistical query (SQ) model. This equivalence relates notions that were conceived
in very different contexts.

(4) Separation of Interactive and Noninteractive Local Learning. Local algorithms can be noninterac-
tive, that is, using one round of interaction with individuals holding the data, or interactive, that is, using
more than one round (and in each receiving randomized responses from individuals). We construct a
concept class, called masked-parity, that is efficiently learnable by interactive local algorithms under the
uniform distribution on examples, but requires an exponential (in the dimension) number of samples to
be learned by a noninteractive local algorithm. The equivalence (3) of local and SQ learning shows that
interaction in local algorithms corresponds to adaptivity in SQ algorithms. The masked-parity class thus
also separates adaptive and nonadaptive SQ learning.

1.1.1 Implications

“Anything” learnable is privately learnable using few samples. The generic agnostic learner (1) has an
important consequence: if some concept class C is learnable by any algorithm, not necessarily a private one,
whose output length in bits is polynomially bounded, then C is learnable privately using a polynomial num-
ber of samples (possibly in exponential time). This result establishes the basic feasibility of private learning:
it was not clear a priori how severely privacy affects sample complexity, even ignoring computation time.

1While the generic learning result (1) extends easily to “agnostic” learning (defined below), the learner for parity does not. The
limitation is not surprising, since even non-private agnostic learning of parity is at least as hard as learning parity with random
noise.
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Figure 1: Two basic models for database privacy: (a) the centralized model, in which data is collected by a trusted
agency that publishes aggregate statistics or answers users’ queries; (b) the local model, in which users retain their
data and run a randomization procedure locally to produce output which is safe for publication. The dotted arrows
from users to data holders indicate that protocols may be completely noninteractive: in this case there is a single
publication, without feedback from users.

Learning with noise is different from private learning. There is an intuitively appealing similarity be-
tween learning from noisy examples and private learning: algorithms for both problems must be robust to
small variations in the data. This apparent similarity is strengthened by a result of Blum, Dwork, McSherry
and Nissim [11] showing that any algorithm in Kearns’ statistical query (SQ) model [39] can be imple-
mented in a differentially private manner. SQ was introduced to capture a class of noise-resistant learning
algorithms. These algorithms access their input only through a sequence of approximate averaging queries.
One can privately approximate the average of a function with values in [0, 1] over the data set of n individu-
als to within additive error O(1/n) (Dwork and Nissim [26]). Thus, one can simulate the behavior of an SQ
algorithm privately, query by query.

Our efficient private learner for parity (2) dispels the similarity between learning with noise and private
learning. First, SQ algorithms provably require exponentially many (in the dimension) queries to learn
parity [39]. More compellingly, learning parity with noise is thought to be computationally hard, and has
been used as the basis of several cryptographic primitives (e.g., [13, 35, 4, 49]).

Limitations of local (“randomized response”) algorithms. Local algorithms (also referred to as ran-
domized response, input perturbation, Post Randomization Method (PRAM), and Framework for High-
Accuracy Strict-Privacy Preserving Mining (FRAPP)) have been studied extensively in the context of privacy-
preserving data mining, both in statistics and computer science (e.g., [53, 2, 1, 3, 52, 29, 45, 36]). Roughly,
a local algorithm accesses each individual’s data via independent randomization operators. See Figure 1,
p. 4.

Local algorithms were introduced to encourage truthfulness in surveys: respondents who know that
their data will be randomized are more likely to answer honestly. For example, Warner [53] famously
considered a survey technique in which respondents are asked to give the correct answer to a sensitive
(true/false) question with probability 2/3 and the incorrect answer with probability 1/3, in the hopes that
the added uncertainty would encourage them to answer honestly. The proportion of “true” answers in the
population is then estimated using a standard, non-private deconvolution. The accepted privacy requirement
for local algorithms is equivalent to imposing differential privacy on each randomization operator [29].
Local algorithms are popular because they are easy to understand and implement. In the extreme case, users
can retain their data and apply the randomization operator themselves, using a physical device [53, 46] or a
cryptographic protocol [5].

The equivalence between local and SQ algorithms (3) is a powerful tool that allows us to apply results
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from learning theory. In particular, since parity is not learnable with a small number of SQ queries [39]
but is PAC learnable privately (2), we get that local algorithms require exponentially more data for some
learning tasks than do general private algorithms. Our results also imply that local algorithms are strictly
less powerful than (non-private) algorithms for learning with classification noise because subexponential
(non-private) algorithms can learn parity with noise [13].

Adaptivity in SQ algorithms is important. Just as local algorithms can be interactive, SQ algorithms
can be adaptive, that is, the averaging queries they make may depend on answers to previous queries. The
equivalence of SQ and local algorithms (3) preserves interaction/adaptivity: a concept class is nonadaptively
SQ learnable if and only if it is noninteractively locally learnable. The masked parity class (4) shows that
interaction (resp., adaptivity) adds considerable power to local (resp., SQ) algorithms.

Most of the reasons that local algorithms are so attractive in practice, and have received such attention,
apply only to noninteractive algorithms (interaction can be costly, complicated, or even impossible—for
instance, when statistical information is collected by an interviewer, or at a polling booth).

This suggests that further investigating the power of nonadaptive SQ learners is an important problem.
For example, the SQ algorithm for learning conjunctions [42] is nonadaptive, but SQ formulations of the
perceptron and k-means algorithms [11] seem to rely heavily on adaptivity.

Understanding the “price” of privacy for learning problems. The SQ result of Blum et al. [11] and our
learner for parity (2) provide efficient (i.e., polynomial time) private learners for essentially all the concept
classes known (by us) to have efficient non-private distribution-free learners. Finding a concept class that
can be learned efficiently, but not privately and efficiently, remains an interesting and important question.

Our results also lead to questions of optimal sample complexity for learning problems of practical im-
portance. The private simulation of SQ algorithms due to Blum et al. [11] uses a factor of approximately√
t/ε more data points than the naı̈ve non-private implementation, where t is the number of SQ queries and

ε is the parameter of differential privacy (typically a small constant). In contrast, the generic agnostic learner
(1) uses a factor of at most 1/ε more samples than the corresponding non-private learner. For parity, our
private learner uses a factor of roughly 1/ε more samples than, and about the same computation time as,
the non-private learner. What, then, is the additional cost of privacy when learning practical concept classes
(half-planes, low-dimensional curves, etc)? Can the theoretical sample bounds of (1) be matched by (more)
efficient learners?

1.1.2 Techniques

Our generic private learner (1) adapts the exponential sampling technique of McSherry and Talwar [44],
developed in the context of auction design. Our use of the exponential mechanism inspired an elegant
subsequent result of Blum, Liggett, and Roth [14] (BLR) on simultaneously approximating many different
functions.

The efficient private learner for parity (2) uses a very different technique, based on sampling, running a
non-private learner, and occasionally refusing to answer based on delicately calibrated probabilities. Run-
ning a non-private learner on a random subset of examples is a very intuitive approach to building private
algorithms, but it is not private in general. The private learner for parity illustrates both why this technique
can leak private information and how it can sometimes be repaired based on special (in this case, algebraic)
structure.

5
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The interesting direction of the equivalence between SQ and local learners (3) is proved via a simulation
of any local algorithm by a corresponding SQ algorithm. We found this simulation surprising since local
protocols can, in general, have very complex structure (see, e.g., [29]). The SQ algorithm proceeds by a
direct simulation of the output of the randomization operators. For a given input distribution D and any
operator R, one can sample from the corresponding output distribution R(D) via rejection sampling. We
show that if R is differentially private, the rejection probabilities can be approximated via low-accuracy SQ
queries to D.

Finally, the separation between adaptive and nonadaptive SQ (4) uses a Fourier analytic argument in-
spired by Kearns’ SQ lower bound for parity [39].

1.1.3 Classes of Private Learning Algorithms

LNI∗ = NASQ∗
LI∗ = SQ∗

PPAC∗ = PAC∗ PARITY

MASKED-PARITY

Figure 2: Relationships among learning classes taking into account sample complexity, but not computational efficiency.

We can summarize our results via a complexity-theoretic picture of learnable and privately learnable
concept classes (more precisely, the members of the classes are pairs of concept classes and example dis-
tributions). In order to make asymptotic statements, we measure complexity in terms of the length d of the
binary description of examples.

We first consider learners that use a polynomial (in d) number of samples and output a hypothesis that is
described using a polynomial number of bits, but have unlimited computation time. Let PAC∗ denote the set
of concept classes that are learnable by such algorithms ignoring privacy, and let PPAC∗ denote the subset
of PAC∗ learnable by differentially private2 algorithms.

Since we restrict the learner’s output to a polynomial number of bits, the hypothesis classes of the
algorithms are de facto limited to have size at most exp(poly(d)). Thus, the generic private learner (point
(1) in the introduction) will use a polynomial number of samples, and PAC∗ = PPAC∗.

We can similarly interpret the other results above. Within PAC∗, we can consider subsets of concepts
learnable by SQ algorithms (SQ∗), nonadaptive SQ algorithms (NASQ∗), local interactive algorithms (LI∗)
and local noninteractive algorithms (LNI∗). We obtain the following picture (see page 6):

LNI∗ = NASQ∗ ( LI∗ = SQ∗ ( PPAC∗ = PAC∗.

The equality of LI∗ and SQ∗, and of LNI∗ and NASQ∗, follow from the SQ simulation of local algorithms
(Theorem 5.14). The parity and masked-parity concept classes separate PPAC∗ from SQ∗ and SQ∗ from
NASQ∗, respectively (Corollaries 5.15 and 5.17). (Note: The separation of PPAC∗ from SQ∗ holds even
for distribution-free learning; in contrast, the separation of SQ∗ from NASQ∗ holds for learnability under a

2Differential privacy is quantified by a real parameter ε > 0. To make qualitative statements, we look at algorithms where
ε→ 0 as d→∞. Taking ε = 1/dc for any constant c > 0 would yield the same class.
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specific distribution on examples, since the adaptive SQ learner for MASKED-PARITY requires a uniform
distribution on examples.)

When we take computational efficiency into account, the picture changes. The relation between local
and SQ classes remain the same modulo a technical restriction on the randomization operators (Defini-
tion 5.13). SQ remains distinct from PPAC since parity is efficiently learnable privately. However, it is
an open question whether concept classes which can be efficiently learned can also be efficiently learned
privately.

1.2 Related Work

Prior to this work, the literature on differential privacy studied function approximation tasks (e.g. [20,
26, 11, 24, 47, 7]), with the exception of the work of McSherry and Talwar on mechanism design [44].
Nevertheless, several of these prior results have direct implications to machine learning-related problems.
Blum et al. [11] considered a particular class of learning algorithms (SQ), and showed that algorithms in the
class could be simulated using noisy function evaluations. In an independent, unpublished work, Chaudhuri,
Dwork, and Talwar considered a version of private learning in which privacy is afforded only to input
labels, but not to examples. Other works considered specific machine learning problems such as mining
frequent itemsets [29], k-means clustering [11, 47], learning decision trees [11], and learning mixtures of
Gaussians [47].

As mentioned above, a subsequent result of Blum, Ligett and Roth [14] on approximating classes of
low-VC-dimension functions was inspired by our generic agnostic learner. We discuss their result further
in Section 3.1. Since the original version of our work, there have also been several results connecting
differential privacy to more “statistical” notions of utility, such as consistency of point estimation and density
estimation [50, 23, 54, 56].

Our separation of interactive and noninteractive protocols in the local model (3) also has a precedent:
Dwork et al. [24] separated interactive and noninteractive private protocols in the centralized model, where
the user accesses the data via a server that runs differentially private algorithms on the database and sends
back the answers. That separation has a very different flavor from the one in this work: any example of a
computation that cannot be performed noninteractively in the centralized model must rely on the fact that the
computational task is not defined until after the first answer from the server is received. (Otherwise, the user
can send an algorithm for that task to the server holding the data, thus obviating the need for interaction.) In
contrast, we present a computational task that is hard for noninteractive local algorithms – learning masked
parity – yet is defined in advance.

In the machine learning literature, several notions similar to differential privacy have been explored
under the rubric of “algorithmic stability” [19, 40, 16, 43, 28, 9]. The most closely related notion is change-
one error stability, which measures how much the generalization error changes when an input is changed
(see the survey [43]). In contrast, differential privacy measures how the distribution over the entire output
changes—a more complex measure of stability (in particular, differential privacy implies change-one error
stability). A different notion, stability under resampling of the data from a given distribution [10, 9], is con-
nected to the sample-and-aggregate method of [47] but is not directly relevant to the techniques considered
here. Finally, in a different vein, Freund, Mansour and Schapire [31] used a weighted averaging technique
with the same weights as the sampler in our generic learner to reduce generalization error (see Section 3.1).
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2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. Logarithms base 2 and base e are denoted by log and ln, respec-
tively. Pr[·] and E[·] denote probability and expectation, respectively. A(x) is the probability distribution
over outputs of a randomized algorithmA on input x. The statistical difference between distributions P and
Q on a discrete space D is defined as maxS⊂D | P (S)−Q(S)|.

2.1 Differential Privacy

A statistical database is a vector z = (z1, . . . , zn) over a domain D, where each entry zi ∈ D represents
information contributed by one individual. Databases z and z′ are neighbors if zi 6= z′i for exactly one
i ∈ [n] (i.e., the Hamming distance between z and z′ is 1). All our algorithms are symmetric, that is, they do
not depend on the order of entries in the database z. Thus, we could define a database as a multi-set in D,
and use symmetric difference instead of the Hamming metric to measure distance. We adhere to the vector
formulation for consistency with the previous works.

A (randomized) algorithm (in our context, this will usually be a learning algorithm) is private if neigh-
boring databases induce nearby distributions on its outcomes:

Definition 2.1 (ε-differential privacy [24]). A randomized algorithm A is ε-differentially private if for all
neighboring databases z, z′, and for all sets S of outputs,

Pr[A(z) ∈ S] ≤ exp(ε) · Pr[A(z′) ∈ S].

The probability is taken over the random coins of A.

In [24], the notion above was called “indistinguishability”. The name “differential privacy” was sug-
gested by Mike Schroeder, and first appeared in Dwork [21].

Differential privacy composes well (see, e.g., [22, 47, 44, 38]):

Claim 2.2 (Composition and Post-processing). If a randomized algorithm A runs k algorithms A1, ...,Ak,
where each Ai is εi-differentially private, and outputs a function of the results (that is, A(z) = g(A1(z),
A2(z), ...,Ak(z)) for some probabilistic algorithm g), then A is (

∑k
i=1 εi)-differentially private.

One method for obtaining efficient differentially private algorithms for approximating real-valued func-
tions is based on adding Laplacian noise to the true answer. Let Lap(λ) denote the Laplace probability
distribution with mean 0, standard deviation

√
2λ, and p.d.f. f(x) = 1

2λe
−|x|/λ.

Theorem 2.3 (Dwork et al. [24]). For a function f : Dn → R, define its global sensitivity GSf =
maxz,z′ |f(z) − f(z′)| where the maximum is over all neighboring databases z, z′. Then, an algorithm
that on input z returns f(z) + η where η ∼ Lap(GSf/ε) is ε-differentially private.

2.2 Preliminaries from Learning Theory

A concept is a function that labels examples taken from the domain X by the elements of the range Y .
A concept class C is a set of concepts. It comes implicitly with a way to represent concepts; size(c) is
the size of the (smallest) representation of c under the given representation scheme. The domain and the
range of the concepts in C are understood to be ensembles X = {Xd}d∈N and Y = {Yd}d∈N, where the
representation of elements in Xd, Yd is of size at most d. We focus on binary classification problems, in
which the label space Yd is {0, 1} or {+1,−1}; the parameter d thus measures the size of the examples
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in Xd. (We use the parameter d to formulate asymptotic complexity notions.) The concept classes are
ensembles C = {Cd}d∈N where Cd is the class of concepts from Xd to Yd. When the size parameter is clear
from the context or not important, we omit the subscript in Xd, Yd, Cd.

LetD be a distribution over labeled examples inXd×Yd. A learning algorithm is given access toD (the
method for accessing D depends on the type of learning algorithm). It outputs a hypothesis h : Xd → Yd
from a hypothesis class H = {Hd}d∈N. The goal is to minimize the misclassification error of h on D,
defined as

err(h) = Pr
(x,y)∼D

[h(x) 6= y] .

The success of a learning algorithm is quantified by parameters α and β, where α is the desired error
and β bounds the probability of failure to output a hypothesis with this error. Error measures other than
misclassification are considered in supervised learning (e.g., L2

2). We study only misclassification error
here, since for binary labels it is equivalent to the other common error measures.

A learning algorithm is usually given access to an oracle that produces i.i.d. samples from D. Equiv-
alently, one can view the learning algorithm’s input as a list of n labeled examples, i.e., z ∈ Dn where
D = Xd × Yd. PAC learning and agnostic learning are described in Definitions 2.4 and 2.5. Another
common method of access to D is via “statistical queries”, which return the approximate average of a func-
tion over the distribution. Algorithms that work in this model can be simulated given i.i.d. examples. See
Section 5.

PAC learning algorithms are frequently designed assuming a promise that the examples are labeled
consistently with some target concept c from a class C: namely, c ∈ Cd and y = c(x) for all (x, y) in the
support of D. In that case, we can think of D as a distribution only over examples Xd. To avoid ambiguity,
we use X to denote a distribution over Xd. In the PAC setting, err(h) = Prx∼X [h(x) 6= c(x)].

Definition 2.4 (PAC Learning). A concept class C over X is PAC learnable using hypothesis class H if
there exist an algorithm A and a polynomial poly(·, ·, ·) such that for all d ∈ N, all concepts c ∈ Cd,
all distributions X on Xd, and all α, β ∈ (0, 1/2), given inputs α, β and z = (z1, · · · , zn), where n =
poly(d, 1/α, log(1/β)), zi = (xi, c(xi)) and xi are drawn i.i.d. from X for i ∈ [n], algorithm A outputs a
hypothesis h ∈ H satisfying

Pr[err(h) ≤ α] ≥ 1− β. (1)

The probability is taken over the random choice of the examples z and the coin tosses of A.
Class C is (inefficiently) PAC learnable if there exists some hypothesis classH and a PAC learnerA such

that A PAC learns C using H. Class C is efficiently PAC learnable if A runs it time polynomial in d, 1/α,
and log(1/β).

Remark: Our definition deviates slightly from the standard one (see, e.g., [42]) in that we do not take into
consideration the size of the concept c. This choice allows us to treat PAC learners and agnostic learners
identically. One can change Definition 2.4 so that the number of samples depends polynomially also on the
size of c without affecting any of our results significantly.

Agnostic learning [32, 41] is an extension of PAC learning that removes assumptions about the target
concept. Roughly speaking, the goal of an agnostic learner for a concept class C is to output a hypothesis
h ∈ H whose error with respect to the distribution is close to the optimal possible by a function from C. In
the agnostic setting, err(h) = Pr(x,y)∼D[h(x) 6= y].
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Definition 2.5 (Agnostic Learning). (Efficiently) agnostically learnable is defined identically to (efficiently)
PAC learnable with two exceptions: (i) the data are drawn from an arbitrary distribution D on Xd × Yd;
(ii) instead of Equation 1, the output of A has to satisfy:

Pr[err(h) ≤ OPT + α] ≥ 1− β,

where OPT = minf∈Cd {err(f)} . As before, the probability is taken over the random choice of z, and the
coin tosses of A.

Definitions 2.4 and 2.5 capture distribution-free learning, in that they do not assume a particular form
for the distributions X or D. In Section 5.3, we also consider learning algorithms that assume a specific
distribution D on examples (but make no assumption on which concept in C labels the examples). When we
discuss such algorithms, we specifyD explicitly; without qualification, “learning” refers to distribution-free
learning.

Efficiency Measures. The definitions above are sufficiently detailed to allow for exact complexity state-
ments (e.g., “A learns C using n(α, β) examples and time O(t)”), and the upper and lower bounds in this
paper are all stated in this language. However, we also focus on two broader measures to allow for qualitative
statements: (a) polynomial sample complexity is the default notion in our definitions. With the novel restric-
tion of privacy, it is not a priori clear which concept classes can be learned using few examples even if we
ignore computation time. (b) We use the term efficient private learning to impose the additional restriction
of polynomial computation time (which implies polynomial sample complexity).

3 Private PAC and Agnostic Learning

We define private PAC learners as algorithms that satisfy definitions of both differential privacy and PAC
learning. We emphasize that these are qualitatively different requirements. Learning must succeed on
average over a set of examples drawn i.i.d. from D (often under the additional promise that D is consistent
with a concept from a target class). Differential privacy, in contrast, must hold in the worst case, with no
assumptions on consistency.

Definition 3.1 (Private PAC Learning). Let d, α, β be as in Definition 2.4 and ε > 0. Concept class C is
(inefficiently) privately PAC learnable using hypothesis class H if there exists an algorithm A that takes
inputs ε, α, β, z, where n, the number of labeled examples in z, is polynomial in 1/ε, d, 1/α, log(1/β), and
satisfies

a. [Privacy] For all ε > 0, algorithm A(ε, ·, ·, ·) is ε-differentially private (Definition 2.1);

b. [Utility] Algorithm A PAC learns C usingH (Definition 2.4).

C is efficiently privately PAC learnable if A runs in time polynomial in d, 1/ε, 1/α, and log(1/β).

Definition 3.2 (Private Agnostic Learning). (Efficient) private agnostic learning is defined analogously to
(efficient) private PAC learning with Definition 2.5 replacing Definition 2.4 in the utility condition.

Evaluating the quality of a particular hypothesis is easy: one can privately compute the fraction of the
data it classifies correctly (enabling cross-validation) using the sum query framework of [11]. The difficulty
of constructing private learners lies in finding a good hypothesis in what is typically an exponentially large
space.
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3.1 A Generic Private Agnostic Learner

In this section, we present a private analogue of a basic consistent learning result, often called the cardinality
version of Occam’s razor3. This classical result shows that a PAC learner can weed out all bad hypotheses
given a number of labeled examples that is logarithmic in the size of the hypothesis class (see [42, p. 35]).
Our generic private learner is based on the exponential mechanism of McSherry and Talwar [44].

Let q : Dn × Hd → R take a database z and a candidate hypothesis h, and assign it a score q(z, h) =
−|{i : xi is misclassified by h, i.e., yi 6= h(xi)}| . That is, the score is minus the number of points in z
misclassified by h. The classic Occam’s razor argument assumes a learner that selects a hypothesis with
maximum score (that is, minimum empirical error). Instead, our private learner Aεq is defined to sample a
random hypothesis with probability dependent on its score:

Aεq(z) : Output hypothesis h ∈ Hd with probability proportional to exp
(
εq(z,h)

2

)
.

Since the score ranges from −n to 0, hypotheses with low empirical error are exponentially more likely to
be selected than ones with high error.

AlgorithmAεq fits the framework of McSherry and Talwar, and so is ε-differentially private. This follows
from the fact that changing one entry zi in the database z can change the score by at most 1.

Lemma 3.3 (following [44]). The algorithm Aεq is ε-differentially private.

A similar exponential weighting algorithm was considered by Freund, Mansour and Schapire [31] for
constructing binary classifiers with good generalization error bounds. We are not aware of any direct connec-
tion between the two results. Also note that, except for the case where |Hd| is polynomial, the exponential
mechanism Aεq(z) does not necessarily yield a polynomial time algorithm.

Theorem 3.4 (Generic Private Learner). For all d ∈ N, any concept class Cd whose cardinality is at most
exp(poly(d)) is privately agnostically learnable using Hd = Cd. More precisely, the learner uses n =
O((ln |Hd| + ln 1

β ) · max{ 1
εα ,

1
α2 }) labeled examples from D, where ε, α, and β are parameters of the

private learner. (The learner might not be efficient.)

Proof. Let Aεq be as defined above. The privacy condition in Definition 3.1 is satisfied by Lemma 3.3.
We now show that the utility condition is also satisfied. Consider the eventE = {Aεq(z) = h with err(h) >

α+OPT}. We want to prove that Pr[E] ≤ β. Define the training error of h as

errT (h) =
∣∣{i ∈ [n] |h(xi) 6= yi}

∣∣/n = −q(z, h)/n .

By Chernoff-Hoeffding bounds (see Theorem A.2 in Appendix A),

Pr
[
|err(h)− errT (h)| ≥ ρ

]
≤ 2 exp(−2nρ2)

for all hypotheses h ∈ Hd. Hence,

Pr
[
|err(h)− errT (h)| ≥ ρ for some h ∈ Hd

]
≤ 2|Hd| exp(−2nρ2).

3We discuss the relationship to the “compression version” of Occam’s razor at the end of this section.
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We now analyze Aεq(z) conditioned on the event that for all h ∈ Hd, |err(h)− errT (h)| < ρ. For every
h ∈ Hd, the probability that Aεq(z) = h is

exp(− ε
2 · n · errT (h))∑

h′∈Hd exp(− ε
2 · n · errT (h′))

≤
exp

(
− ε

2 · n · errT (h)
)

maxh′∈Hd exp(− ε
2 · n · errT (h′))

= exp

(
− ε

2
· n · (errT (h)− min

h′∈Hd
errT (h′))

)
≤ exp

(
− ε

2
· n · (errT (h)− (OPT + ρ))

)
.

Hence, the probability that Aεq(z) outputs a hypothesis h ∈ Hd such that errT (h) ≥ OPT + 2ρ is at most
|Hd| exp(−εnρ/2).

Now set ρ = α/3. If err(h) ≥ OPT + α then |err(h)− errT (h)| ≥ α/3 or errT (h) ≥ OPT + 2α/3.
Thus Pr[E] ≤ |Hd|(2 exp(−2nα2/9) + exp(−εnα/6)) ≤ β where the last inequality holds for n ≥
6
(

(ln |Hd|+ ln 1
β ) ·max{ 1

εα ,
1
α2 }
)

.

Remark: In the non-private agnostic case, the standard Occam’s razor bound guarantees that O((log |Cd| +
log(1/β))/α2) labeled examples suffice to agnostically learn a concept class Cd. The bound of Theorem 3.4
differs by a factor of O(αε ) if α > ε, and does not differ at all otherwise. For (non-agnostic) PAC learning,
the dependence on α in the sample size for both the private and non-private versions improves to 1/α. In
that case the upper bounds for private and non-private learners differ by a factor of O(1/ε). Finally, the
theorem can be extended to settings where Hd 6= Cd, but in this case using the same sample complexity the
learner outputs a hypothesis whose error is close to the best error attainable by a function inHd.

Implications of the Private Agnostic Learner The private agnostic learner has the following important
consequence: If some concept class Cd is learnable by any algorithm A, not necessarily a private one,
and A’s output length in bits is polynomially bounded, then there is a (possibly exponential time) private
algorithm that learns Cd using a polynomial number of samples. SinceA’s output is polynomially long, A’s
hypothesis class Hd must have size at most 2poly(d). Since A learns Cd using Hd, class Hd must contain a
good hypothesis. Thus, our private learner will learn Cd usingHd with sample complexity linear in log |Hd|.

The “compression version” of Occam’s razor It is most natural to state our result as an analogue of
the cardinality version of Occam’s razor, which bounds generalization error in terms of the size of the
hypothesis class. However, our result can be extended to the compression version, which captures the
general relationship between compression and learning (we borrow the “cardinality version” terminology
from [42]). This latter version states that any algorithm which “compresses” the data set, in the sense that it
finds a consistent hypothesis which has a short description relative to the number of samples seen so far, is
a good learner (see [15] and [42, p. 34]).

Compression by itself does not imply privacy, because the compression algorithm’s output might encode
a few examples in the clear (for example, the hyperplane output by a support vector machine is defined
via a small number of actual data points). However, Theorem 3.4 can be extended to provide a private
analogue of the compression version of Occam’s razor. If there exists an algorithm that compresses, in
the sense above, then there also exists a private PAC learner which does not have fixed sample complexity,
but uses an expected number of samples similar to that of the compression algorithm. The private learner
proceeds in rounds: at each round it requests twice as many examples as in the previous round, and uses a
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restricted hypothesis class consisting of sufficiently concise hypotheses from the original class H. We omit
the straightforward details.

3.2 Private Learning with VC dimension Sample Bounds

In the non-private case one can also bound the sample size of a PAC learner in terms of the Vapnik-
Chervonenkis (VC) dimension of the concept class.

Definition 3.5 (VC dimension). A set S ⊆ Xd is shattered by a concept class Cd if Cd restricted to S
contains all 2|S| possible functions from S to {0, 1}. The VC dimension of Cd, denoted V CDIM(Cd), is
the cardinality of a largest set S shattered by Cd.

We can extend Theorem 3.4 to classes with finite VC dimension, but the resulting sample complexity
also depends logarithmically on the size of the domain from which examples are drawn. Recent results
of Beimel et al. [8] show that for “proper” learning, the dependency is in fact necessary; that is, the VC
dimension alone is not sufficient to bound the sample complexity of proper private learning. It is unclear if
the dependency is necessary in general.

Corollary 3.6. Every concept class Cd is privately agnostically learnable using hypothesis class Hd = Cd
with n = O((V CDIM(Cd) · ln |Xd| + ln 1

β ) ·max{ 1
εα ,

1
α2 }) labeled examples from D. Here, ε, α, and β

are parameters of the private agnostic learner, and V CDIM(Cd) is the VC dimension of Cd. (The learner
is not necessarily efficient.)

Proof. Sauer’s lemma (see, e.g., [42]) implies that there are O(|Xd|V CDIM(Cd)) different labelings of Xd

by functions in Cd. We can thus run the generic learner of the previous section with a hypothesis class of
size |Hd| = O(|Xd|V CDIM(Cd)). The statement follows directly.

Our original proof of the corollary used a result of Blum, Ligget and Roth [14] (which was inspired, in
turn, by our generic learning algorithm) on generating synthetic data. The simpler proof above was pointed
out to us by an anonymous reviewer.

Remark: Computability Issues with Generic Learners In their full generality, the generic learning
results of the previous sections (Theorems 3.4 and 3.6) produce well-defined randomized maps, but not nec-
essarily “algorithms” in the sense of “functions uniformly computable by Turing machines”. This is because
the concept class and example domain may themselves not be computable (nor even recognizable) uniformly
(imagine, for example, a concept class indexed by elements of the halting problem). It is commonly assumed
in the learning literature that elements of the concept class and domain can be computed/recognized by a
Turing machine and some bound on the length of their binary representations is known. In this case, the
generic learners can be implemented by randomized Turing machines with finite expected running time.

4 An Efficient Private Learner for PARITY

Let PARITY be the class of parity functions cr : {0, 1}d → {0, 1} indexed by r ∈ {0, 1}d, where cr(x) =
r � x denotes the inner product modulo 2. In this section, we present an efficient private PAC learning
algorithm for PARITY. The main result is stated in Theorem 4.4.

The standard (non-private) PAC learner for PARITY [33, 30] looks for the hidden vector r by solving a
system of linear equations imposed by examples (xi, cr(xi)) that the algorithm sees. It outputs an arbitrary
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vector consistent with the examples, i.e., in the solution space of the system of linear equations. We want
to design a private algorithm that emulates this behavior. A major difficulty is that the private learner’s
behavior must be specified on all databases z, even those which are not consistent with any single parity
function. The standard PAC learner would simply fail in such a situation (we denote failure by the output
⊥). In contrast, the probability that a private algorithm fails must be similar for all neighbors z and z′.

We first present a private algorithmA for learning PARITY that succeeds only with constant probability.
Later we amplify its success probability and get a private PAC learnerA∗ for PARITY. Intuitively, the reason
PARITY can be learned privately is that when a new example (corresponding to a new linear constraint) is
added, the space of consistent hypotheses shrinks by at most a factor of 2. This holds unless the new
constraint is inconsistent with previous constraints. In the latter case, the size of the space of consistent
hypotheses goes to 0. Thus, the solution space changes drastically on neighboring inputs only when the
algorithm fails (outputs⊥). The fact that algorithm outputs⊥ on a database z and a valid (non⊥) hypothesis
on a neighboring database z′ might lead to privacy violations. To avoid this, our algorithm always outputs
⊥ with probability at least 1/2 on any input (Step 1).

A PRIVATE LEARNER FOR PARITY, A(z, ε)

1. With probability 1/2, output ⊥ and terminate.

2. Construct a set S by picking each element of [n] independently with probability p = ε/4.

3. Use Gaussian elimination to solve the system of equations imposed by examples, indexed by S:
namely, {xi � r = cr(xi) : i ∈ S}. Let VS denote the resulting affine subspace.

4. Pick r∗ ∈ VS uniformly at random and output cr∗ ; if VS = ∅, output ⊥.

The proof of A’s utility follows by considering all the possible situations in which the algorithm fails to
satisfy the error bound, and by bounding the probabilities with which these situations occur.

Lemma 4.1 (Utility of A). Let X be a distribution over X = {0, 1}d. Let z = (z1, . . . , zn), where for all
i ∈ [n], the entry zi = (xi, c(xi)) with xi drawn i.i.d. from X and c ∈ PARITY. If n ≥ 8

εα (d ln 2 + ln 4)
then

Pr[A(z, ε) = h with error(h) ≤ α] ≥ 1

4
.

Proof. By standard arguments in learning theory [42], |S| ≥ 1

α

(
d ln 2 + ln

1

β

)
labeled examples are

sufficient for learning PARITY with error α and failure probability β. Since A adds each element of [n] to
S independently with probability p = ε/4, the expected size of S is pn = εn/4. By the Chernoff bound
(Theorem A.1), |S| ≥ εn/8 with probability at least 1 − e−εn/16. We set β = 1

4 and pick n such that
εn/8 ≥ 1

α (d ln 2 + ln 4).
We now bound the overall success probability. A(z, ε) = h with err(h) ≤ α unless one of the following

bad events happens: (i)A terminates in Step 1, (ii)A proceeds to Step 2, but does not get enough examples:
|S| < 1

α (d ln 2 + ln 4)), (iii) A gets enough examples, but outputs a hypothesis with error greater than α.
The first bad event occurs with probability 1/2. If the lower bound on the database size n is satisfied then
the second bad event occurs with probability at most e−εn/16/2 ≤ 1/8. The last inequality follows from the
bound on n and the fact that α ≤ 1/2. Finally, by our choice of parameters, the last bad event occurs with
probability at most β/2 = 1/8. The claimed bound on the success probability follows.
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Lemma 4.2 (Privacy of A). Algorithm A is ε-differentially private.

As mentioned above, the key observation in the following proof is that including of any single point in
the sample set S increases the probability of a hypothesis being output by at most 2.

Proof. To show that A is ε-differentially private, it suffices to prove that any output of A, either a valid
hypothesis or ⊥, appears with roughly the same probability on neighboring databases z and z′. In the
remainder of the proof we fix ε, and write A(z) as shorthand for A(z, ε). We have to show that

Pr[A(z) = h] ≤ eε · Pr[A(z′) = h] for all neighbors z, z′ ∈ Dn and all hypotheses h ∈ PARITY; (2)

Pr[A(z) =⊥] ≤ eε · Pr[A(z′) =⊥] for all neighbors z, z′ ∈ Dn. (3)

We prove the correctness of Eqn. (2) first. Let z and z′ be neighboring databases, and let i denote the entry
on which they differ. Recall that A adds i to S with probability p. Since z and z′ differ only in the ith entry,
Pr[A(z) = h | i /∈ S] = Pr[A(z′) = h | i /∈ S].

Note that if Pr[A(z′) = h | i /∈ S] = 0, then also Pr[A(z) = h | i /∈ S] = 0, and hence Pr[A(z) = h] =
0 because adding a constraint does not add new vectors to the space of solutions. Otherwise, Pr[A(z′) =
h | i /∈ S] > 0. In this case, we rewrite the probability on z as follows:

Pr[A(z) = h] = p · Pr[A(z) = h | i ∈ S] + (1− p) · Pr[A(z) = h | i /∈ S],

and apply the same transformation to the probability on z′. Then

Pr[A(z) = h]

Pr[A(z′) = h]
=

p · Pr[A(z) = h | i ∈ S] + (1− p) · Pr[A(z) = h | i /∈ S]

p · Pr[A(z′) = h | i ∈ S] + (1− p) · Pr[A(z′) = h | i /∈ S]

≤ p · Pr[A(z) = h | i ∈ S] + (1− p) · Pr[A(z) = h | i /∈ S]

p · 0 + (1− p) · Pr[A(z′) = h | i /∈ S]

=
p

1− p
· Pr[A(z) = h | i ∈ S]

Pr[A(z) = h | i /∈ S]
+ 1 (4)

We need the following claim:

Claim 4.3.
Pr[A(z) = h | i ∈ S]

Pr[A(z) = h | i /∈ S]
≤ 2, for all z ∈ Dn and all hypotheses h ∈ PARITY.

This claim is proved below. For now, we can plug it into Eqn. (4) to get

Pr[A(z) = h]

Pr[A(z′) = h]
≤ 2p

1− p
+ 1 ≤ ε+ 1 ≤ eε .

The first inequality holds since p = ε/4 and ε ≤ 1/2. This establishes Eqn. (2). The proof of Eqn. (3) is
similar:

Pr[A(z) =⊥]

Pr[A(z′) =⊥]
=

p · Pr[A(z) =⊥ | i ∈ S] + (1− p) · Pr[A(z) =⊥ | i /∈ S]

p · Pr[A(z′) =⊥ | i ∈ S] + (1− p) · Pr[A(z′) =⊥ | i /∈ S]

≤ p · 1 + (1− p) · Pr[A(z) =⊥ | i /∈ S]

p · 0 + (1− p) · Pr[A(z′) =⊥ | i /∈ S]

=
p

(1− p) · Pr[A(z′) =⊥ | i /∈ S]
+ 1 ≤ 2p

1− p
+ 1 ≤ ε+ 1 ≤ eε.

In the last line, the first inequality follows from the fact that on any input, A outputs ⊥ with probability at
least 1/2. This completes the proof of the lemma.
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We now prove Claim 4.3.

Proof of Claim 4.3. The left hand side

Pr[A(z) = h | i ∈ S]

Pr[A(z) = h | i /∈ S]
=

∑
T⊆[n]\{i} Pr[A(z) = h | S = T ∪ {i}] · Pr[A selects T from [n] \ {i}]∑

T⊆[n]\{i} Pr[A(z) = h | S = T ] · Pr[A selects T from [n] \ {i}]
.

To prove the claim, it is enough to show that
Pr[A(z) = h | S = T ∪ {i}]

Pr[A(z) = h | S = T ]
≤ 2 for each T ⊆ [n] \ {i}.

Recall that VS is the space of solutions to the system of linear equations {〈xi, r〉 = cr(xi) : i ∈ S}. Recall
also that A picks r∗ ∈ VS uniformly at random and outputs h = cr∗ . Therefore,

Pr[A(z) = cr∗ | S] =

{
1/|VS | if r∗ ∈ VS ,
0 otherwise.

If Pr[A(z) = h | S = T ] = 0 then Pr[A(z) = h | S = T ∪ {i}] = 0 because a new constraint does not add
new vectors to the space of solutions. If Pr[A(z) = h | S = T ∪ {i}] = 0, the required inequality holds. If
neither of the two probabilities is 0,

Pr[A(z) = h | S = T ∪ {i}]
Pr[A(z) = h | S = T ]

=
1/|VT∪{i}|

1/|VT |
=
|VT |
|VT∪{i}|

≤ 2.

The last inequality holds because in Z2 (the finite field with 2 elements where arithmetic is performed
modulo 2), adding a consistent linear constraint either reduces the space of solutions by a factor of 2 (if the
constraint is linearly independent from VT ) or does not change the solutions space (if it is linearly dependent
on the previous constraints). The constraint indexed by i has to be consistent with constraints indexed by T ,
since both probabilities are not 0.

It remains to amplify the success probability of A. To do so, we construct a private version of the
standard (non-private) algorithm for amplifying a learner’s success probability. The standard amplification
algorithm generates a set of hypotheses by invoking A multiple times on independent examples, and then
outputs a hypothesis from the set with the least training error as evaluated on a fresh test set (see [42] for
details). Our private amplification algorithm differs from the standard algorithm only in the last step: it
adds Laplacian noise to the training error to obtain a private version of the error, and then uses the perturbed
training error instead of the true training error to select the best hypothesis from the set. 4 Recall that
Lap(λ) denotes the Laplace probability distribution with mean 0, standard deviation

√
2λ, and p.d.f. f(x) =

1
2λe
−|x|/λ.

4Alternatively, we could use the generic learner from Theorem 3.4 to select among the candidate hypotheses; the resulting
algorithm has the same asymptotic behavior as the algorithm we discuss here. We chose the algorithm that we felt was simplest.
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AMPLIFIED PRIVATE PAC LEARNER FOR PARITY, A∗(z, ε, α, β)

1. β′ ← β
2 ; α′ ← α

5 ; k ←
⌈
log 3

4

(
1
β′

)⌉
; n′ ← cd

εα′ ; s←
c′k
α′ε log

(
k
β′

)
(where c, c′ are constants).

2. If n ≤ kn′ + s, stop and return “insufficient samples”.

3. Divide z = (z1, . . . , zn) into two parts, training set z̄ = (z1, . . . , zkn′) and test set ẑ =
(zkn′+1, . . . , zkn′+s).

4. Divide z̄ into k equal parts each of size n′, let z̄j = (z(j−1)n′+1, . . . , zjn′) for j ∈ [k].

5. For j ← 1 to k
hj ← A(z̄j , ε);

set perturbed training error of hj to êrrT (hj) =

∣∣{zi ∈ ẑ : hj(xi) 6= c(xi)}
∣∣

s
+ Lap

(
k

sε

)
.

6. Output h∗ = hj∗ where j∗ = argminj∈[k]{êrrT (hj)}.

Theorem 4.4. AlgorithmA∗ efficiently and privately PAC learns PARITY (according to Definition 3.1) with
O
(
d log(1/β)

εα

)
samples.

The theorem follows from Lemmas 4.5 and 4.6 that, respectively, prove privacy and utility of A∗.

Lemma 4.5 (Privacy of A∗). Algorithm A∗ is ε-differentially private.

Proof. We prove that even if A∗ released all hypotheses hj , computed in Step 5, together with the corre-
sponding perturbed error estimates êrrT (hj), it would still be ε-differentially private. Since the output ofA∗
can be computed solely from this information, Claim 2.2 implies that A∗ is ε-differentially private.

By Lemma 4.2, algorithm A is ε-differentially private. Since A is invoked on disjoint parts of z to
compute hypotheses hj , releasing all these hypotheses would also be ε-differentially private.

Define the training error of hypothesis hj on ẑ as errT (hj) = |{zi ∈ ẑ : hj(xi) 6= c(xi)}|/s. The
global sensitivity of the errT function is 1/s because |errT (z)−errT (z′)| ≤ 1/s for every pair of neighboring
databases z, z′. Therefore, by Theorem 2.3, releasing êrrT (hj) for one j, would be ε/k-differentially private,
and by Claim 2.2, releasing all k of them would be ε-differentially private. Since hypotheses hj and their
perturbed errors êrrT (hj) are computed on disjoint parts of the database z, releasing all that information
would still be ε-differentially private.

Lemma 4.6 (Utility of A∗). A∗(·, ε, ·, ·) PAC learns PARITY with sample complexity n = O(d log(1/β)
εα ).

Proof. Let X be a distribution over X = {0, 1}d. Recall that z = (z1, . . . , zn), where for all i ∈ [n],
the entry zi = (xi, c(xi)) with xi drawn i.i.d. from X and c ∈ PARITY. Assume that β < 1/4, and
n ≥ C d log(1/β)

εα for a constant C to be determined. We wish to prove that Pr[err(h∗) ≤ α] ≥ 1− β, where
h∗ is the hypothesis output by A∗.

Consider the set of candidate hypotheses {h1, ..., hk} output by the invocations of A inside of A∗. We
call a hypothesis h good if err(h) ≤ α

5 = α′. We call a hypothesis h bad if err(h) ≥ α = 5α′. Note that
good and bad refer to a hypothesis’ true error rate on the underlying distribution.

We will show:

1. With probability at least 1− β′, one of the invocations of A outputs a good hypothesis.
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2. Conditioned on any particular outcome {h1, ..., hk} of the invocations of A, with probability at least
1− β′, both:

(a) Every good hypothesis hj in {h1, ..., hk} has training error errT (hj) ≤ 2α′.

(b) Every bad hypothesis hj in {h1, ..., hk} has training error errT (hj) ≥ 4α′.

3. Conditioned on any particular hypotheses {h1, ..., hk} and training errors errT (h1), ..., errT (hk), with
probability at least 1− β′, for all j simultaneously, |êrrT (hj)− errT (hj)| < α′.

Suppose the events described in the three claims above all occur. Then some good hypothesis has
perturbed training error less than 3α′, yet all bad hypotheses have perturbed training error greater than 3α′.
Thus, the hypothesis hj∗ with minimal perturbed error êrrT (hj∗) is not bad, that is, has true error at most
α. By the claims above, the probability that all three events occur is at least 1 − 3β′ = 1 − β, and so the
lemma holds. We now prove the claims.

First, by the utility guarantee of A, each invocation of A inside A∗ outputs a good hypothesis with
probability at least 1

4 as long as the constant c > 8(ln 2 + ln 4) (since in that case n′, the size of each z̄j ,
is large enough to apply Lemma 4.1). The k invocations of the algorithm A are on independent samples,
so the probability that none of h1, . . . , hk is good is at most

(
3
4

)k. Setting k ≥ log 3
4

1
β′ ensures that with

probability at least 1− β′, at least one of h1, . . . , hk has error at most α′.
Second, fix a particular sequence of candidate hypotheses h1, ..., hk. For each j, the training error

errT (hj) is the average of s Bernouilli trials, each with success probability err(hj). (Crucially, the training
set ẑ is independent of the data z̄ used to find the candidate hypotheses). To bound the training error, we
apply the multiplicative Chernoff bound (Theorem A.1) with n = s and p = err(hj). Here, p ≤ α′ if hj is
good, and p ≥ 5α′ if hj is bad.

By the multiplicative Chernoff bound (Theorem A.1) if s ≥ c1
α′ ln k

β′ (for appropriate constant c1), then

Pr
[
errT (hj) ≥ 2α′

∣∣hj is good
]
≤ Pr[Binomial(s, α′) ≥ 2α′s] ≤ β′

k
, and

Pr
[
errT (hj) ≤ 4α′

∣∣hj is bad
]
≤ Pr[Binomial(s, 5α′) ≤ 4α′s] ≤ β′

k
.

By a union bound, all the training errors are (simultaneously) approximately correct, with probability at
least 1− k · β

′

k = 1− β′.
Finally, we prove the third claim. Consider a particular candidate hypothesis hj . If s ≥ c2k

α′ε ln k
β′ (for

appropriate constant c2), then (by using the c.d.f.5 of the Laplacian distribution)

Pr
[
|errT (hj)− êrrT (hj)| < α′

]
= Pr

[
Lap

(
k

sε

)
≥ α′

]
≤ β′

k
.

By a union bound, all k perturbed estimates are within α′ of their correct value with probability at least
1 − k · β

′

k = 1 − β′. This probability is taken over the choice of Laplacian noise, and so the bound holds
independently of the particular hypotheses or their training error estimates.

Remark: In the non-private caseO((d+ln(1/β))/α) labels are sufficient for learning PARITY. Theorem 4.4
shows that the upper bounds on the sample size of private and non-private learners differ only by a factor of
O(ln(1/β)/ε).

5The cumulative distribution function of the Laplacian distribution Lap(λ) is F (x) = 1
2
exp

(
x
λ

)
if x < 0 and 1− 1

2
exp

(
− x
λ

)
if x ≥ 0.
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5 Local Protocols and SQ learning

In this section, we relate private learning in the local model to the SQ model of Kearns [39]. We first define
the two models precisely. We then prove their equivalence (Section 5.1), and discuss the implications for
learning (Section 5.2). Finally, we define the concept class MASKED-PARITY and prove that it separates
interactive from noninteractive local learning (Section 5.3).

Local Model. We start by describing private computation in the local model. Informally, each individual
holds her private information locally, and hands it to the learner after randomizing it. This is modeled by
letting the local algorithm access each entry zi in the input database z = (z1, . . . , zn) ∈ Dn only via local
randomizers.

Definition 5.1 (Local Randomizer). An ε-local randomizer R : D → W is an ε-differentially private
algorithm that takes a database of size n = 1. That is, Pr[R(u) = w] ≤ eε Pr[R(u′) = w] for all u, u′ ∈ D
and all w ∈W . The probability is taken over the coins of R (but not over the choice of the input).

Note that since a local randomizer works on a data set of size 1, u and u′ are neighbors for all u, u′ ∈ D.
Thus, this definition is consistent with our previous definition of differential privacy.

Definition 5.2 (LR Oracle). Let z = (z1, . . . , zn) ∈ Dn be a database. An LR oracle LRz(·, ·) gets an
index i ∈ [n] and an ε-local randomizer R, and outputs a random value w ∈ W chosen according to the
distribution R(zi). The distribution R(zi) depends only on the entry zi in z.

Definition 5.3 (Local algorithm). An algorithm is ε-local if it accesses the database z via the oracle LRz

with the following restriction: for all i ∈ [n], if LRz(i, R1), . . . , LRz(i, Rk) are the algorithm’s invocations
of LRz on index i, where each Rj is an εj-local randomizer, then ε1 + · · ·+ εk ≤ ε.

Local algorithms that prepare all their queries to LRz before receiving any answers are called nonin-
teractive; otherwise, they are interactive.

By Claim 2.2, ε-local algorithms are ε-differentially private.

SQ Model. In the statistical query (SQ) model, algorithms access statistical properties of a distribution
rather than individual examples.

Definition 5.4 (SQ Oracle). Let D be a distribution over a domain D. An SQ oracle SQD takes as input a
function g : D → {+1,−1} and a tolerance parameter τ ∈ (0, 1); it outputs v such that:

|v − E
u∼D

[g(u)]| ≤ τ.

The query function g does not have to be Boolean. Bshouty and Feldman [17] showed that given access
to an SQ oracle which accepts only boolean query functions, one can simulate an oracle that accepts real-
valued functions g : D → [−b, b], and outputs Eu∼D[g(u)] ± τ using O(log(b/τ)) nonadaptive queries to
the SQ oracle and similar processing time.

Definition 5.5 (SQ algorithm). An SQ algorithm accesses the distribution D via the SQ oracle SQD. SQ
algorithms that prepare all their queries to SQD before receiving any answers are called nonadaptive;
otherwise, they are called adaptive.

Note that we do not restrict g() to be efficiently computable. We will distinguish later those algorithms
that only make queries to efficiently computable functions g().
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5.1 Equivalence of Local and SQ Models

Both the SQ and local models restrict algorithms to access inputs in a particular manner. There is a signifi-
cant difference though: an SQ oracle sees a distribution D, whereas a local algorithm takes as input a fixed
(arbitrary) database z. Nevertheless, we show that if the entries of z are chosen i.i.d. according to D, then
the models are equivalent. Specifically, an algorithm in one model can simulate an algorithm in the other
model. Moreover, the expected query complexity is preserved up to polynomial factors. We first present
the simulation of SQ algorithms by local algorithms (Section 5.1.1). The simulation in the other direction is
more delicate and is presented in Section 5.1.2.

5.1.1 Simulation of SQ Algorithms by Local Algorithms

Blum et al. [11] used the fact that sum queries can be answered privately with little noise to show that any
efficient SQ algorithm can be simulated privately and efficiently. We show that it can be simulated efficiently
even by a local algorithm, albeit with slightly worse parameters.

Let g : D → [−b, b] be the SQ query we want to simulate. By Theorem 2.3, since the global sensitivity
of g is 2b, the algorithm Rg(u) = g(u) + η where η ∼ Lap(2b/ε) is an ε-local randomizer. We construct
a local algorithm Ag that, given n and ε, and access to a database z via oracle LRz, invokes LRz for every
i ∈ [n] with the randomizer Rg and outputs the average of the responses:

A LOCAL ALGORITHM Ag(n, ε, LRz) THAT SIMULATES AN SQ QUERY g : D → [−b, b]

1. Output 1
n

∑n
i=1 LRz(i, Rg) where Rg(u) = g(u) + η and η ∼ Lap

(
2b
ε

)
.

Note that Ag outputs
(

1
n

∑n
i=1 g(zi)

)
+
(

1
n

∑n
i=1 ηi

)
, where the ηi are i.i.d. from Lap

(
2b
ε

)
. This algo-

rithm is ε-local (since it applies a single ε-local randomized to each entry of z), and therefore ε-differentially
private. The following lemma shows that when the input database z is large enough,Ag simulates the desired
SQ query g with small error probability.

Lemma 5.6. If, for sufficiently large constant c, database z has n ≥ c · log(1/β)b2

ε2τ2 entries sampled i.i.d.
from a distribution D on D then algorithm Ag approximates Eu∼D[g(u)] within additive error ±τ with
probability at least 1− β.

Proof. Let v = Eu∼D[g(u)] denote the true mean. By the Chernoff-Hoeffding bound for real-valued vari-
ables (Theorem A.2),

Pr
[∣∣ 1
n

∑n
i=1 g(ui)− v

∣∣ ≥ τ
2

]
≤ 2 exp

(
− τ2n

8b2

)
.

Therefore, in the absence of additive Laplacian random noise, O
(

ln(1/β)b2

τ2

)
examples are enough to ap-

proximate Eu∼D[g(u)] within additive error ± τ
2 with probability at least 1 − β

2 . (Note that the number of
examples is smaller than the lower bound on n in the lemma by a factor of O(ε−2)).

The effect of the Laplace noise can also be bounded via a standard tail inequality: setting λ = 2b
ε in

Lemma A.3, we get that O
(

ln(1/β)b2

ε2τ2

)
samples are sufficient to ensure that the average of ηi’s lies outside

[− τ
2 ,

τ
2 ] with probability at most β2 . It follows that Ag estimates Eu∼D[g(u)] within additive error ±τ with

probability at least 1− β.
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Simulation. Lemma 5.6 suggests a simple simulation of a nonadaptive (resp. adaptive) SQ algorithm by
a noninteractive (resp. interactive) local algorithm as follows. Assume the SQ algorithm makes at most t
queries to an SQ oracle SQD. The local algorithm simulates each query (g, τ) by running Ag(n′, ε, LRz)

with parameters β′ = β
t and n′ = c · log(1/β′)b2

ε2τ2 on a previously unused portion of the database z containing
n′ entries.

Theorem 5.7 (Local simulation of SQ). Let ASQ be an SQ algorithm that makes at most t queries to an
SQ oracle SQD, each with tolerance at least τ . The simulation above is ε-differentially private. If, for
sufficiently large constant c, database z has n ≥ c · t log(t/β)b2

ε2τ2 entries sampled i.i.d. from the distribution D
then the simulation above gives the same output as ASQ with probability at least 1− β.

Furthermore, the simulation is noninteractive if the original SQ algorithm ASQ is nonadaptive. The
simulation is efficient if ASQ is efficient.

Proof. Each query is simulated with a fresh portion of z, and hence privacy is preserved as each entry is
subjected to a single application of the ε-local randomizer R. By the union bound, the probability of any
of the queries not being approximated within additive error τ is bounded by β. If ASQ is nonadaptive, all
queries to LRz can be prepared in advance.

5.1.2 Simulation of Local Algorithms by SQ Algorithms

Let z be a database containing n entries drawn i.i.d. from D. Consider a local algorithm making t queries to
LRz. We show how to simulate any local randomizer invoked by this algorithm by using statistical queries
to SQD. Consider one such randomizerR : D →W applied to database entry zi. To simulateR we need to
samplew ∈W with probability p(w) = Przi∼D[R(zi) = w] taken over choice of zi ∼ D and random coins
of R. (For interactive algorithms, it is more complicated, as the outputs of different randomizers applied to
the same entry zi have to be correlated.)

A brief outline. The idea behind the simulation is to sample from a distribution p̃(·) that is within small
statistical distance of p(·). We start by applyingR to an arbitrary input (say, 0) in the domainD and obtaining
a sample w ∼ R(0). Let q(w) = Pr[R(0) = w] (where the probability is taken only over randomness inR).
Since R is ε-differentially private, q(w) approximates p(w) within a multiplicative factor of eε. To sample
w from p(·) we use the following rejection sampling algorithm: (i) sample w according to q(·); (ii) with
probability p(w)

q(w)eε , output w; (iii) with the remaining probability, repeat from (i).
To carry out this strategy, we must be able to estimate p(w), which depends on the (unknown) distri-

bution D, using only SQ queries. The rough idea is to express p(w) as the expectation, taken over z ∼ D,
of the function h(z) = Pr[R(z) = w] (where the probability is taken only over the coins of R). We can
use h as the basis of an SQ query. In fact, to get a sufficiently accurate approximation, we must rescale the
function h somewhat, and keep careful track of the error introduced by the SQ oracle. We present the details
in the proof of the following lemma:

Lemma 5.8. Let z be a database with entries drawn i.i.d. from a distribution D. For every noninter-
active (resp. interactive) local algorithm A making t queries to LRz, there exists a nonadaptive (resp.
adaptive) statistical query algorithm B that in expectation makes O(t · eε) queries to SQD with accuracy
τ = Θ(β/(e2εt)), such that the statistical difference between B’s and A’s output distributions is at most β.

Proof. We split the simulation over Claims 5.9 and 5.10. In the first claim we simulate noninteractive local
algorithms using nonadaptive SQ algorithms. In the second claim we simulate interactive local algorithms
using adaptive SQ algorithms.
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Claim 5.9. For every noninteractive local algorithm A making t nonadaptive queries to LRz, there exists
a nonadaptive statistical query algorithm B that in expectation makes t · eε queries to SQD with accuracy
τ = Θ(β/(e2εt)), such that the statistical difference between B’s and A’s output distributions is at most β.

Proof. We show how to simulate an ε-local randomizer R using statistical queries to SQD. Because the
local algorithm is non-interactive, we can assume without loss of generality that it accesses each entry zi
only once. (Otherwise, one can combine different operators, used to access zi, by combining their answers
into a vector). Given R : D →W , we want to sample w ∈W with probability:

p(w) = Pr
zi∼D

[R(zi) = w].

Two notes regarding our notation: (i) As zi is drawn i.i.d. from D we could omit the index i. We leave
the index i in our notation to emphasize that we actually simulate the application of a local randomizer R to
entry i. (ii) The semantics of Pr changes depending on whether it appears with the subscript zi ∼ D or not.
Przi∼D denotes probability that is taken over the choice of zi ∼ D and the randomness in R, whereas when
the subscript is dropped zi is fixed and the probability is taken only over the randomness in R. Using this
notation, Przi∼D[R(zi) = w] = Ezi∼D Pr[R(zi) = w].

We construct an algorithm BR,ε that given t, β, and access to the SQ oracle, outputs w ∈ W , such that
the statistical difference between the output probability distributions of BR,ε and the simulated randomizer
R is at most β/t. Because the local algorithm makes t queries, the overall statistical distance between the
output distribution of the local algorithm and the distribution resulting from the simulation is at most β, as
desired.

AN SQ ALGORITHM BR,ε(t, β, SQD) THAT SIMULATES AN ε-LOCAL RANDOMIZER R : D →W .

1. Sample w ∼ R(0). Let q(w) = Pr[R(0) = w].

2. Define g : D → [−1, 1] by g(zi) =
Pr[R(zi) = w]− q(w)

q(w)(eε − e−ε)
, and let τ = β

3e2εt
.

3. Query the SQ oracle v = SQD(g, τ), and let p̃(w) = vq(w)(eε − e−ε) + q(w).

4. With probability p̃(w)

q(w)(1+ β
3t

)eε
, output w.

With the remaining probability, repeat from Step 1.

We now show that the statistical distance between the output of BR,ε(t, β, SQD) and the distribution p(·)
is at most β/t. As mentioned above, our initial approximation p̃(·) of p(·) in Step 1 is obtained by applying
R to some arbitrary input (namely, 0) in the domain D and sampling w ∼ R(0). Since R is ε-differentially
private, q(w) = Pr[R(0) = w] approximates p(w) within a multiplicative factor of eε.

However, to carry out the rejection sampling strategy, we need to get a much better estimate of p(w).
Steps 2 and 3 compute such an estimate, p̃(w), satisfying (with probability 1)

p̃(w) ∈ (1± φ) p(w) where φ = β
3t . (5)

We establish the inclusion (5) below. For now, assume it holds on every iteration. Step 4 is a rejection
sampling step which ensures that the output will follow a distribution close to p̃(·). Inclusion (5) guarantees
that p̃(w)

q(w)(1+ β
3t

)eε
is at most 1, so the probability in Step 4 is well defined. The difficulty is that the quantity
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p̃(w) is not a well-defined function of w: it depends on the SQ oracle and may vary, for the same w, from
iteration to iteration.

Nevertheless, p̃ is fixed for any given iteration of the algorithm. In the given iteration, any particular
elementw gets output with probability q(w)× p̃(w)

q(w)(1+φ)eε = p̃(w)
(1+φ)eε . The probability that the given iteration

terminates (i.e., outputs some w) is then pterminate =
∑

w
p̃(w)

(1+φ)eε . By (5), this probability is in 1±φ
(1+φ)eε .

Thus, conditioned on the iteration terminating, element w is output with probability p̃(w)
(1+φ)·eε·pteminate ∈

1±φ
1±φ · p(w). Since φ ≤ 1/3, we can simplify this to get

Pr
[
w output in a given iteration

∣∣iteration produces output
]
∈ (1± 3φ)p(w) .

This implies that no matter which iteration produces output, the statistical difference between the distribution
of w and p(·) will be at most 3φ = β

t , as desired.
Moreover, since each iteration terminates with probability at least 1−φ

1+φ · e
−ε, the expected number of

iterations is at most 1+φ
1−φ · e

ε ≤ 2eε. Thus, the total expected SQ query complexity of the simulation is
O(t · eε).

It remains to prove the correctness of (5). To estimate p(w) givenw, we set up the statistical query g(zi).
This is a valid query since Pr[R(zi) = w] is a function of zi, and furthermore g(zi) ∈ [−1, 1] for all zi as
Pr[R(zi) = w]/Pr[R(0) = w] ∈ e±ε. The SQ query result v lies within Ezi∼D[g(zi)] ± τ , where τ is the
tolerance parameter for the statistical query, and so

E
zi∼D

[g(zi)] =
Ezi∼D Pr[R(zi) = w]− q(w)

q(w)(eε − e−ε)
=

p(w)− q(w)

q(w)(eε − e−ε)
.

Plugging in the bounds for v and q(w) we get that p̃(w) ∈ (1 ± τ ′)p(w) where τ ′ = e2ετ = β
3t . This

establishes (5) and concludes the proof.

Claim 5.10. For every interactive local algorithm A making t queries to LRz, there exists an adaptive sta-
tistical query algorithm B that in expectation makes O(t ·eε) queries SQD with accuracy τ = Θ(β/(e2εt)),
such that the statistical difference between B’s and A’s output distributions is at most β.

Proof. As in the previous claim, we show how to simulate the output of the local randomizers during the run
of the local algorithm. A difference, however, is that because an entry zi may be accessed multiple times, we
have to condition our sampling on the outcomes of previous (simulated) applications of local randomizers
to zi.

More concretely, let R1, R2, ... be the sequence of randomizers that access the entry zi. To simulate
Rk(zi), we must take into account the answers a1, . . . , ak−1 given by the simulations ofR1(zi), . . . , Rk−1(zi).
We show how to do this using adaptive statistical queries to SQD. The notation is the same as in Claim 5.9.
We want to output w ∈W with probability

p(w) = Pr
zi∼D

[Rk(zi) = w |Rk−1(zi) = ak−1, Rk−2(zi) = ak−2, . . . , R1(zi) = a1],

where Rj (1 ≤ j ≤ k − 1) denotes the jth randomizer applied to zi.
As before, we start by sampling w ∼ R(0). Let q(w) = Pr[Rk(0) = w]. Note that q(w) approxi-

mates p(w) within a multiplicative factor of eε becauseR1, . . . , Rk are respectively ε1-,. . . , εk-differentially
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private, and ε1 + . . . + εk ≤ ε. Hence, we can use the rejection sampling algorithm as in Claim 5.9.
Rewrite p(w):

p(w) =
Przi∼D[Rk(zi) = w ∧Rk−1(zi) = ak−1 ∧ · · · ∧R1(zi) = a1]

Przi∼D[Rk−1(zi) = ak−1 ∧ · · · ∧R1(zi) = a1]

=
Ezi∼D[Pr[Rk(zi) = w ∧Rk−1(zi) = ak−1 ∧ · · · ∧R1(zi) = a1]]

Ezi∼D[Pr[Rk−1(zi) = ak−1 ∧ · · · ∧R1(zi) = a1]]

Conditioned on a particular value of zi, the probabilities in the last expression depend only the coins of
the randomizers. The outputs of the randomizers are independent conditioned on zi, and therefore we can
simplify the expression above:

p(w) =
Ezi∼D

[
Pr[Rk(zi) = w] ·

∏k−1
j=1 Pr[Rj(zi) = aj ]

]
Ezi∼D

[∏k−1
j=1 Pr[Rj(zi) = aj ]

]
Let p1 and p2 denote the numerator and denominator, respectively, in the right hand side of the equation
above. Let r1(zi) and r2(zi) denote the values inside the expectations that define p1 and p2, respectively.
Namely,

r1(zi) = Pr[Rk(zi) = w] ·
k−1∏
j=1

Pr[Rj(zi) = aj ] and r2(zi) =
k−1∏
j=1

Pr[Rj(zi) = aj ] .

For estimating p1 = Ezi∼D[r1(zi)] we use the statistical query g1(zi), and for estimating p2 = Ezi∼D[r2(zi)]
we use the statistical query g2(zi) defined as follows:

g1(zi) =
r1(zi)− r1(0)

r1(0)(eε − e−ε)
and g2(zi) =

r2(zi)− r2(0)

r2(0)(eε − e−ε)
.

As in Claim 5.9, one can estimate p1 and p2 to within a multiplicative factor of (1 ± τ ′) where τ ′ = e2ετ
and τ is the accuracy of the statistical queries. The ratio of the estimates for p1 and p2 gives an estimate
p̃(w) for p(w) to within a multiplicative factor (1 ± 3τ ′), for τ ′ ≤ 1

3 . The estimate p̃(w) can then be used
with rejection sampling to sample an output of the randomizer.

Let t be the number of queries made by A. Setting τ ′ ≤ β
3t guarantees that the statistical difference

between distributions p and p̃ is at most βt , and hence the statistical difference between B’s and A’s output
distributions is at most β. As in Claim 5.9, the expected number of SQ queries for rejection sampling is
O(t · eε).

Claims 5.9 and 5.10 imply Lemma 5.8.

Note that the efficiency of the constructions in Lemma 5.8 depends on the efficiency of computing the
functions submitted to the SQ oracle, e.g., the efficiency of computing the probability Pr[R(zi) = w]. We
discuss this issue in the next section.

5.2 Implications for Local Learning

In this section, we define learning in the local and SQ models. The equivalence of the two models follows
from the simulations described in the previous sections. An immediate but important corollary is that local
learners are strictly less powerful than general private learners.
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Definition 5.11 (Local Learning). Locally learnable is defined identically to privately PAC learnable (Def-
inition 3.1), except for the additional requirement that for all ε > 0, algorithm A(ε, ·, ·, ·) is ε-local and
invokes LRz at most poly(d, size(c), 1/ε, 1/α, log(1/β)) times. Class C is efficiently locally learnable if
both: (i) the running time of A and (ii) the time to evaluate each query that A makes are bounded by some
polynomial in d, size(c), 1/ε, 1/α, and log(1/β).

Let X be a distribution over an input domain X . Let SQc,X denote the statistical query oracle that takes
as input a function g : X ×{+1,−1} → {+1,−1} and a tolerance parameter τ ∈ (0, 1) and outputs v such
that: |v − Ex∼X [g(x, c(x))]| ≤ τ .

Definition 5.12 (SQ Learning6). SQ learnable is defined identically to PAC learnable (Definition 2.4), except
that instead of having access to examples z, an SQ learner A can make poly(d, size(c), 1/α, log(1/β))
queries to oracle SQc,X with tolerance τ ≥ 1/poly(d, size(c), 1/α, log(1/β)). Class C is efficiently SQ
learnable if both: (i) the running time of A and (ii) the time to evaluate each query that A makes are
bounded by some polynomial in d, 1/α, and log(1/β).

In order to state the equivalence between SQ and local learning, we require the following efficiency
condition for a local randomizer.

Definition 5.13 (Transparent Local Randomizer). Let R : D → W be an ε-local randomizer. The random-
izer is transparent if both: (i) for all inputs u ∈ D, the time needed to evaluate R; and (ii) for all inputs
u ∈ D and outputs w ∈ W the time taken to compute the probability Pr[R(u) = w], are polynomially
bounded in the size of the input and 1/ε.

As stated, this definition requires exact computation of probabilities. This may not make sense on a
finite-precision machine, since for many natural randomizers the transition probabilities are irrational. One
can relax the requirement to insist that relevant probabilities are computable with additive error at most φ in
time polynomial in log( 1

φ).
All local protocols that have appeared in the literature [29, 3, 2, 1, 29, 45, 36] are transparent, at least in

this relaxed sense.
In the equivalences of the previous sections, transparency of local randomizers corresponds directly to

efficient computability of the function g in an SQ query. To see why, consider first the simulation of SQ
algorithms by local algorithms: if the original SQ algorithm is efficient (that is, query g can be evaluated in
polynomial time) then the local randomizer R(u) = g(u) + η can also be evaluated in polynomial time for
all u ∈ D. Furthermore, it is simple to estimate for all inputs u ∈ D and outputs w ∈ W the probability
Pr[R(u) = w] since R(u) is a Laplacian random variable with known parameters. Second, in the SQ
simulation of a local algorithm, the functions g(zi) = Pr[R(zi)=w]−q(w)

q(w)(eε−e−ε) that are constructed can be evaluated
efficiently precisely when the local randomizers are transparent.

We can now state the main result of this section, which follows from Lemmas 5.6 and 5.8, along with
the correspondence between transparent randomizers and efficient SQ queries.

Theorem 5.14. Let C be a concept class over X . Let X be a distribution over X . Let z = (z1, . . . , zn)
denote a database where every zi = (xi, c(xi)) with xi drawn i.i.d. from X and c ∈ C. Concept class C is

6The standard definition of SQ learning does not allow for any probability of error in the learning algorithm (that is, β = 0). Our
definition allows for a small failure probability β. This enables cleaner equivalence statements and clean modeling of randomized
SQ algorithms. One can show that differentially private algorithms must have some non-zero probability of error, so a relaxation
along these lines is necessary for our results.
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locally learnable using H by an interactive local learner with inputs α, β, and with access to LRz if and
only if C is SQ learnable usingH by an adaptive SQ learner with inputs α, β, and access to SQc,X .

Furthermore, the simulations guarantee the following additional properties: (i) an efficient SQ learner
is simulatable by an efficient local learner that uses only transparent randomizers; (ii) an efficient local
learner that uses only transparent randomizers is simulatable by an efficient SQ learner; (iii) a nonadaptive
SQ (resp. noninteractive local) learner is simulatable by a noninteractive local (resp. nonadaptive SQ)
learner.

Now we can use lower bounds for SQ learners for PARITY (see, e.g., [39, 12, 55]) to demonstrate
limitations of local learners. The lower bound of [12] rules out SQ learners for PARITY that use at most
2d/3 queries of tolerance at least 2−d/3, even (a) allowing for unlimited computing time, (b) under the
restriction that examples be drawn from the uniform distribution and (c) allowing a small probability of
error (see Footnote 6). Since PARITY is (efficiently) privately learnable (Theorem 4.4), and since local
learning is equivalent to SQ learning, we obtain:

Corollary 5.15. Concept classes learnable by local learners are a strict subset of concept classes PAC
learnable privately. This holds both with and without computational restrictions.

5.3 The Power of Interaction in Local Protocols

To complete the picture of locally learnable concept classes, we consider how interaction changes the power
of local learners (and, equivalently, how adaptivity changes SQ learning). As mentioned in the introduction,
interaction is very costly in typical applications of local algorithms. We show that this cost is sometimes nec-
essary, by giving a concept class that an interactive algorithm can learn efficiently with a polynomial number
of examples drawn from the uniform distribution, but for which any noninteractive algorithm requires an
exponential number of examples under the same distribution.

Let MASKED-PARITY be the class of functions cr,a : {0, 1}d × {0, 1}log d × {0, 1} → {+1,−1}
indexed by r ∈ {0, 1}d and a ∈ {0, 1}:

cr,a(x, i, b) =

{
(−1)r�x+a if b = 0,

(−1)ri if b = 1,

where r � x denotes the inner product of r and x modulo 2, and ri is the ith bit of r. This concept class
divides the domain into two parts (according to the last bit, b). When b = 0, the concept cr,a behaves either
like the PARITY concept indexed by r, or like its negation, according to the bit a (the “mask”). When b = 1,
the concept essentially ignores the input example and outputs some bit of the parity vector r.

Below, we consider the learnability of MASKED-PARITY = {cr,a} when the examples are drawn from
the uniform distribution over the domain {0, 1}d+log d+1. In Section 5.3.1, we give a adaptive SQ learner for
MASKED-PARITY under the uniform distribution. The adaptive learner uses two rounds of communication
with the SQ oracle: the first, to learn r from the b = 1 half of the input, and the second, to retrieve the bit a
from the b = 0 half of the input via queries that depend on r.

In Section 5.3.2, we show that no nonadaptive SQ learner which uses 2o(d) examples can consistently
produce a hypothesis that labels significantly more than 3/4 of the domain correctly. The intuition is that
as the queries are prepared nonadaptively, any information about r gained from the b = 1 half of the inputs
cannot be used to prepare queries to the b = 0 half. Since information about a is contained only in the
b = 0 half, in order to extract a, the SQ algorithm is forced to learn PARITY, which it cannot do with
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few examples. Our separation in the SQ model directly translates to a separation in the local model (using
Theorem 5.14).

The following theorem summarizes our results.

Theorem 5.16.

1. There exists an efficient adaptive SQ learner for MASKED-PARITY over the uniform distribution.

2. No nonadaptive SQ learner can learn MASKED-PARITY (with a polynomial number of queries)
even under the uniform distribution on examples. Specifically, there is an SQ oracle O such that any
nonadaptive SQ learner that makes t queries to O over the uniform distribution, all with tolerance
at least 2−d/3, satisfies the following: if the concept cr̄,ā is drawn uniformly at random from the
set of MASKED-PARITY concepts, then, with probability at least 1

2 −
t

2d/3+2 over cr̄,ā, the output
hypothesis h of the learner has err(cr̄,ā, h) ≥ 1

4 .

Corollary 5.17. The concept classes learnable by nonadaptive SQ learners (resp. noninteractive local
learners) under the uniform distribution are a strict subset of the concept classes learnable by adaptive
SQ learners (resp. interactive local learners) under the uniform distribution. This holds both with and
without computational restrictions.

Weak vs. Strong Learning. The learning theory literature distinguishes between strong learning, in which
the learning algorithm is required to produce hypotheses with arbitrarily low error (as in Definition 2.4,
where the parameter α can be arbitrarily small), and weak learning, in which the learner is only required
to produce a hypothesis with error bounded below 1/2 by a polynomially small margin. The separation
proved in this section (Theorem 5.16) applies only to strong learning: although no nonadaptive SQ learner
can produce a hypothesis with error much better than 1/4, it is simple to design a nonadaptive weak SQ
learner for MASKED-PARITY under the uniform distribution with error exactly 1/4.

In fact, it is impossible to obtain an analogue of our separation for weak learning. The characterization of
SQ learnable classes in terms of “SQ dimension” by Blum et al. [12] implies that adaptive and nonadaptive
SQ algorithms are equivalent for weak learning. This is not explicit in [12], but follows from the fact that the
weak learner constructed for classes with low SQ dimension is non-adaptive. (Roughly, the learner works
by checking if the concept at hand is approximately equal to one of a polynomial number of alternatives;
these alternatives depend on the input distribution and the concept class, but not on the particular concept at
hand.)

Distribution-free vs Distribution-specific Learning The results of this section concern the learnabil-
ity of MASKED-PARITY under the uniform distribution. The class MASKED-PARITY does not sepa-
rate adaptive from nonadaptive distribution-free learners, since MASKED-PARITY cannot be learned by
any SQ learner under the distribution which is uniform over examples with b = 0 (in that case, learning
MASKED-PARITY is equivalent to learning PARITY under the uniform distribution). Separating adaptive
from nonadaptive distribution-free SQ learning remains an open problem.

5.3.1 An Adaptive Strong SQ Learner for MASKED-PARITY over the Uniform Distribution

Our adaptive learner for MASKED-PARITY uses two rounds of communication with the SQ oracle: first,
to learn r from the b = 1 half of the input, and second, to retrieve the bit a from the b = 0 half of the input
via queries that depend on r. Theorem 5.16, part (1), follows from the proposition below.
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ADAPTIVE SQ LEARNER AMP FOR MASKED-PARITY OVER THE UNIFORM DISTRIBUTION

1. For j = 1, . . . , d (in parallel)

(a) Define gj : D → {0, 1} by

gj(x, i, b, y) = (i = j) ∧ (b = 1) ∧ (y = −1) ,

where x ∈ {0, 1}d, i ∈ {0, 1}log d, b ∈ {0, 1}, and y = cr,a(x, i, b) ∈ {+1,−1}.

(b) answerj ← SQD(gj , τ), where τ = 1
4d+1 , and r̂j ←

{
1 if answerj > 1

4d ;

0 otherwise.

2. (a) r̂ ← r̂1 . . . r̂d ∈ {0, 1}d

(b) Define gd+1 : D → {0, 1} by

gd+1(x, i, b, y) = (b = 0) ∧ (y 6= (−1)r̂�x) .

where x ∈ {0, 1}d, i ∈ {0, 1}log d, b ∈ {0, 1}, and y = cr,a(x, i, b) ∈ {+1,−1}.

(c) answerd+1 ← SQD(gd+1,
1
5)., and â←

{
1 if answerd+1 >

1
4 ;

0 otherwise.

(d) Output cr̂,â.

Proposition 5.18 (Theorem 5.16, part (1), in detail). The algorithmAMP efficiently learns MASKED-PARITY
(with probability 1) in 2 rounds using d+1 SQ queries computed over the uniform distribution with minimum
tolerance 1

4d+1 .

Proof. Consider the d queries in the first round. If rj = 1, then

E
(x,i,b,y)←D

[gj(x, i, b, y)] = Pr
i∈u{0,1}log d,b∈u{0,1}

[(i = j) ∧ (b = 1)] =
1

2d
.

If rj = 0, then E[gj(x, i, b, y)] = 0. Since the tolerance τ is less than 1
4d , each query gj reveals the jth bit

of r exactly. Thus, the estimate r̂j is exactly rj , and r̂ = r.
Given that r̂ is correct, the second round query gd+1 is always 0 if a = 0. If a = 1, then gd+1 is 1 exactly

when b = 0. Thus E[gd+1(x, i, b, y)] = a
2 (where a ∈ {0, 1}). Since the tolerance is less than 1

4 , querying
gd+1 reveals a: that is, â = a, and so the algorithm outputs the target concept.

Note that the functions g1, . . . , gd+1 are all computable in time O(d), and the computations performed
by AMP can be done in time O(d), so the SQ learner is efficient.

5.3.2 Impossibility of non-adaptive SQ learning for MASKED-PARITY

The impossibility result (Theorem 5.16, part (2)) for nonadaptive learners uses ideas from statistical query
lower bounds (see, e.g., [39, 12, 55]).

Proof of Theorem 5.16, part (2). Recall that the distribution D is uniform over D = {0, 1}d+log(d)+1. For
functions f, h : {0, 1}d+log d+1 → {+1,−1}, recall that err(f, h) = Prx∼D[f(x) 6= h(x)]. Define the inner
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product of f and h as:

〈f, h〉 =
1

|D|
∑
x∈D

f(x)h(x) = E
x∼D

[f(x)h(x)].

The quantity 〈f, h〉 = Prx∼D[f(x) = h(x)] − Prx∼D[f(x) 6= h(x)] = 1 − 2 · err(f, h) measures the
correlation between f and h when x is drawn from the uniform distribution D.

Let the target function cr̄,ā be chosen uniformly at random from the set {cr,a}. Consider a nonadaptive
SQ algorithm that makes t queries g1, . . . , gt. The queries g1, . . . , gt must be independent of r̄ and ā since
the learner is nonadaptive. The only information about ā is in the outputs associated with the b = 0 half of
the inputs (recall that cr̄,ā(x, i, b) = (−1)ri when b = 1).

The main technical part of the proof follows the lower bound on SQ learning of PARITY. Using Fourier
analysis, we split the true answer to a query into three components: a component that depends on the query
g but not the pair (r̄, ā), a component that depends on g and r̄ (but not ā), and a component that depends on
g, r̄, and ā (see Equation (7) below). We show that for most target concepts cr̄,ā the last component can be
ignored by the SQ oracle. That is, a very close approximation to the correct output to the SQ queries made
by the learner can be computed solely based on g and r̄. Consequently, for most target concepts cr̄,ā, the SQ
oracle can return answers that are independent of ā, and hence ā cannot be learned.

Consider a statistical query g : {0, 1}d × {0, 1}log d × {0, 1} × {+1,−1} → {+1,−1}. For some
(x, i, b) ∈ D, the value of g(x, i, b, ·) depends on the label (i.e., (g(x, i, b,+1) 6= g(x, i, b,−1))) and
otherwise g(x, i, b, ·) is insensitive to the label (i.e., (g(x, i, b,+1) = g(x, i, b,−1))). Every statistical
query g(·, ·, ·, ·) can be decomposed into a label-independent and label-dependent part. This fact was first
implicitly noted by Blum et al. [12] and made explicit by Bshouty and Feldman [17] (Lemma 30). We adapt
the proof presented in [17] for our purpose.

Let

fg(x, i, b) =
g(x, i, b, 1)− g(x, i, b,−1)

2
and Cg =

1

2
E[g(x, i, b, 1) + g(x, i, b,−1)] .

We can rewrite the expectation of g on any concept cr̄,ā in terms of these quantities:

E[g(x, i, b, cr̄,ā(x, i, b))] = Cg + 〈fg, cr̄,ā〉 .

Note that Cg depends on the statistical query g, but not on the target function. We now wish to analyze
the second term, 〈fg, cr̄,ā〉, more precisely. To this end, we define the following functions parameterized by
s ∈ {0, 1}:

csr̄,ā(x, i, b) =

{
0 if b 6= s,
cr̄,ā(x, i, b) if b = s,

and fsg (x, i, b) =

{
0 if b 6= s,
fg(x, i, b) if b = s.

(6)

Recall that 〈fg, cr̄,ā〉 is a sum over tuples (x, i, b). We can separate the sum into two pieces: one with
tuples where b = 0 and the other with tuples where b = 1. Using the functions csr̄,ā, f

s
g just defined, we can

write 〈fg, cr̄,ā〉 = 〈f0
g , c

0
r̄,ā〉+ 〈f1

g , c
1
r̄,ā〉. Hence,

E[g(x, i, b, cr̄,ā(x, i, b))] = Cg + 〈f0
g , c

0
r̄,ā〉+ 〈f1

g , c
1
r̄,ā〉. (7)

The inner product 〈f1
g , c

1
r̄,ā〉 depends on the statistical query g and on r̄, but not on ā. Thus only the

middle term on the righthand side of (7) depends on ā.
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Consider an SQ oracle O = Ocr̄,ā,D that responds to every query (g, τ) as follows (recall that D is the
uniform distribution):

Ocr̄,ā,D(g, τ) =

{
Cg + 〈f1

g , c
1
r̄,ā〉 if |〈f0

g , c
0
r̄,ā〉| < τ,

E[g(x, i, b, cr̄,ā(x, i, b))] otherwise.

If the condition |〈f0
g , c

0
r̄,ā〉| < τ is met for all the queries (g, τ) made by the learner, then the SQ oracle O

never replies with a quantity that depends on ā. We now show that this is typically the case.
Extend the definition of csr̄,ā (Equation 6) to any (r, a) ∈ {0, 1}d × {0, 1} by defining

c0
r,a(x, i, b) =

{
0 if b = 1,
cr,a(x, i, b)

(
= (−1)〈r,x〉+a

)
if b = 0.

Note that for r, r′ ∈ {0, 1}d and a ∈ {0, 1},

〈c0
r,a, c

0
r′,a〉 =

{
1/2 if r = r′,
0 if r 6= r′.

We get that {c0
r,0}r∈{0,1}d is an orthogonal set of functions, and similarly with {c0

r,1}r∈{0,1}d . The `2 norm

of c0
r,0 is ‖c0

r,0‖ =
√
〈c0
r,0, c

0
r,0〉 = 1/

√
2, so the set {

√
2 · c0

r,0}r∈{0,1}d is orthonormal. A similar argument

holds for {
√

2 · c0
r,1}r∈{0,1}d .

Expanding the function f0
g in the orthonormal set {

√
2 · c0

r,0}r∈{0,1}d , we get:∑
r∈{0,1}d

〈f0
g ,
√

2 · c0
r,0〉2 ≤ ‖f0

g ‖2 = 〈f0
g , f

0
g 〉 ≤ 1/2 .

(The first inequality is loose in general because the set {
√

2 · c0
r,0}r∈{0,1}d spans a subset of dimension 2d

whereas f0
g is taken from a space of dimension 2d+log d+1). Similarly,∑

r∈{0,1}d
〈f0
g ,
√

2 · c0
r,1〉2 ≤ ‖f0

g ‖2 = 〈f0
g , f

0
g 〉 ≤ 1/2.

Summing the two previous equations, we get∑
(r,a)∈{0,1}d×{0,1}

2 · 〈f0
g , c

0
r,a〉2 ≤ 1 .

Hence, at most 22d/3−1 functions cr,a can have |〈f0
g , c

0
r,a〉| ≥ 1/2d/3. Since r̄, ā was chosen uniformly

at random we can restate this: for any particular query g, the probability that c0
r̄,ā has inner product more

than 1/2d/3 with f0
g is at most 22d/3−1/2d+1 = 2−d/3. This is true regardless of a: since c0

r,0 = −c0
r,0,

we have |〈f0
g , c

0
r,0〉| = |〈f0

g , c
0
r,1〉|, so the event that |〈f0

g , c
0
r̄,ā〉| ≥ 1/2d/3 happens with probability at most

2−d/3 over r̄, for ā = 0, 1.
Recall that the learner makes t queries, g1, . . . , gt. Let Good be the event that |〈f0

gi , cr̄,ā〉| ≤ 1/2d/3 for
all i ∈ [t] (i.e., the oracle can answer each of the queries independently of ā). Taking a union bound over
queries, we have Pr[Good] ≥ 1− t/2d/3+2 (where the probability is taken only over r̄).

We argued above that there is a valid SQ oracle which, conditioned on Good, can be simulated us-
ing r̄ but without knowledge of ā, as long as all queries are made with tolerance τ ≥ 1/2d/3 (as in

30



the theorem statement). To conclude the proof, we now argue that no nonadaptive strong learner ex-
ists for MASKED-PARITY over the uniform distribution. For that we concentrate on the b = 0 half of
the inputs, where the outcome of cr̄,ā(·) depends on a. Let h be the output hypothesis of the learner.
For any input (x, i, 0) we have cr̄,0(x, i, 0) = −cr̄,1(x, i, 0). Thus either cr̄,0(x, i, 0) 6= h(x, i, 0) or
cr̄,1(x, i, 0) 6= h(x, i, 0), and so some choice of ā causes the error of h to be at least 1/4.

Let A be the event that err(h, cr̄,ā) ≥ 1/4. Because Good depends only on r̄, we can think of ā as being
selected after the learner’s hypothesis h whenever Good occurs. Thus, Pr[A |Good] ≥ 1/2. Using Good to
denote the complement of the event Good, we get

Pr[A] = Pr[A ∧Good] + Pr[A ∧Good]

≥ Pr[A |Good] Pr[Good] + 0 ≥ 1

2
(1− t/2d/3+2).

Therefore, Pr[err(h, cr̄,ā) ≥ 1/4] ≥ 1
2(1− t/2d/3+2), as desired.
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A Concentration Bounds

We need several standard tail bounds in this paper.

Theorem A.1 (Multiplicative Chernoff Bounds (e.g. [18, 6])). Let X1, . . . , Xn be i.i.d. Bernoulli random
variables with Pr[Xi = 1] = µ. Then for every φ ∈ (0, 1],

Pr

[∑
iXi

n
≥ (1 + φ)µ

]
≤ exp

(
−φ

2µn

3

)
and

Pr

[∑
iXi

n
≤ (1− φ)µ

]
≤ exp

(
−φ

2µn

2

)
.
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Theorem A.2 (Real-valued Additive Chernoff-Hoeffding Bound [34]). Let X1, . . . , Xn be i.i.d. random
variables with E[Xi] = µ and a ≤ Xi ≤ b for all i. Then for every δ > 0,

Pr

[∣∣∣∣∑iXi

n
− µ

∣∣∣∣ ≥ δ] ≤ 2 exp

(
−2δ2n

(b− a)2

)
.

Lemma A.3 (Sums of Laplace Random Variables). Let X1, ..., Xn be i.i.d. random variables drawn from
Lap(λ) (i.e., with probability density h(x) = 1

2λ exp
(
− |x|λ

)
). Then for every δ > 0,

Pr

[∣∣∣∣∑n
i=1Xi

n

∣∣∣∣ ≥ δ] = exp

(
−δ

2n

4λ2

)
.

The proof of this lemma is standard; we include it here since we were unable to find an appropriate
reference.

Proof. Let S =
∑n

i=1Xi. By the Markov inequality, for all t > 0,

Pr[S > δn] = Pr[etS > etδn] ≤ E[etS ]

etδn
=
mS(t)

etδn
,

where mS(t) = E[etS ] is the moment generating function of S. To compute mS(t), note that the moment
generating function of X ∼ Lap(λ) is mX(t) = E[etX ] = 1

1−(λt)2 , defined for 0 < t < 1
λ . Hence

mS(t) = (mX(t))n = (1 − (λt)2)−n < exp(n(λt)2), where the last inequality holds for (λt)2 < 1
2 . We

get that Pr[S > δn] ≤ exp(n((λt)2 − tδ)). To complete the proof, set t = δ
2λ

2 (note that if δ < 1 and

λ > 1 then (λt)2 = ( δ2λ)2 < 1
2 ). We get that Pr[S > δn] ≤ exp

(
n
((

δ
2λ
)2 − δ2

2 λ
))

= exp
(
−n δ2

4 λ
2
)

,
as desired.
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